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Abstract
We present a detailed model study of exciton transfer processes in
donor–bridge–acceptor (DBA) systems. Using a model which includes
the intermolecular Coulomb interaction and the coupling to a dissipative
environment we calculate the phase diagram, the absorption spectrum as well as
dynamic equilibrium properties with the numerical renormalization group. This
method is non-perturbative and therefore allows one to cover the full parameter
space, especially the case when the intermolecular Coulomb interaction is of the
same order as the coupling to the environment and perturbation theory cannot
be applied. For DBA systems with up to six sites we found a transition to
the localized phase (self-trapping) depending on the coupling to the dissipative
environment. We discuss various criteria which favour delocalized exciton
transfer.

1. Introduction

Exciton transfer belongs to the key processes in many chemical and biological systems, organic
based nanostructures and semiconductors [1–3]. The progress in manufacturing molecular
electronic devices, biological hybrid systems, and model systems based on quantum dots,
nanoscale molecular aggregates and bio-engineered proteins opens the door to understanding
these fundamental processes [4] and also to finding applications in (bio-) molecular electronics,
biosensing, and quantum computation [5].

Excitons are electron–hole pairs which do not transfer charge but energy, by the
deexcitation of a donor molecule followed by the excitation of an acceptor molecule. The
radiationless excitation transfer is caused by dipole and exchange interactions and proceeds
via a short lived virtual photon [6]. In this work we consider Frenkel excitons [7] where the
exciton is a molecular excitation with an electron in the lowest unoccupied molecular orbital
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(LUMO) and a hole in the highest occupied molecular orbital (HOMO) on the same molecule.
Here the Coulomb coupling of the electron–hole pair is much larger than the hopping matrix
element of a single hole or electron. Exciton transfer where the Frenkel exciton concept can
be applied occurs in many bio-molecules: e.g., rhodopsin, porphyrins, blue copper protein,
carotenoids, and chlorophylls. A well studied molecule is the light-harvesting antenna (LH-
II) from the bacterial photosystem Rhodopseudomonas acidophila. It is characterized by a
symmetric structure and composed of nine identical units forming a ring. Each unit is composed
of a chlorophyll dimer. The light-harvesting complexes store and transfer excitations with high
efficiency.

In the photosynthetic process an LH-II ring absorbs a photon. The excitation is transferred
to other LH-II rings and sent via the LH-I ring to the reaction centre and then converted to
chemical energy. The excitation in the LH-II ring B850 can move over the whole ring—it is
delocalized over the ring. In other rings, such as B800, the excitations are usually considered to
be more localized [4]. Furthermore, mechanisms exist which dissipate excitation energy to save
the organism from damage [8]. The degree of delocalization depends strongly on the coupling
to the vibronic environment and may be crucial for the function of the specific protein.

The interpretation of optical spectra [9] requires a theory which incorporates both static
and dynamic disorder. If the fluctuations of the protein environment occur on a much larger
timescale than those of the excitonic system, the disorder is regarded as static. Such a static
disorder can be treated by a thermodynamic average. The dynamic disorder stems from the
coupling of the electronic degrees of freedom to the fluctuations of the environment. In the
present paper we will study the effect of dissipation while neglecting static disorder.

A full ab initio quantum chemical calculation of molecules which show exciton transfer
reactions is impossible; therefore it is reasonable to investigate the system using simple models
which, nevertheless, cover the relevant physics of the problem. The most elementary non-trivial
model which describes quantum dissipation is the well studied spin-boson model [10, 11].
It can be viewed as an archetype for modelling the system–environment interaction in bio-
molecules in which the electronic degrees of freedom couple to a dissipative environment.

A variety of theoretical methods have been developed to calculate absorption spectra and
rates (see, e.g., [12–19]). Some investigations of exciton transfer systems were based on
perturbation theory in the exchange coupling between the excitons or in the coupling of the
electronic system to the vibrations. If the exciton–vibrational coupling α is weak compared to
the dipole–dipole coupling, density-matrix theory is used [3]. If the intermolecular Coulomb
coupling J is small we are in the limit of nonadiabatic exciton transfer. Here perturbation
theory is applicable, which leads to the Förster equations [3].

A key challenge for a theoretical study of exciton transfer is to cover the whole range of
possible behaviour, from coherent to incoherent transfer or even localization or self-trapping
of the excitations. Here we use the non-perturbative numerical renormalization group (NRG)
to calculate equilibrium properties of the exciton system in the full parameter space. We give
a detailed study of the phase diagram, dynamic equilibrium properties for chains and rings up
to six sites, and the frequency dependent linear absorption spectra of excitons in a dimer and
trimer molecule as a function of the coupling to the bosonic bath. The behaviour of the system
is governed by the competition between the couplings J and α which determine whether the
excitations are delocalized or localized.

The models we are considering here describe general electron–boson systems with a
limited number of quantum states on a few sites with a coupling to a (quantum) dissipative
environment. We restrict ourselves to donor, acceptor, and bridge molecules with only two
electronic levels per molecule, neglecting the spin degree of freedom. Each site is filled with
one spinless electron.



Dissipative exciton transfer in donor–bridge–acceptor systems 5987

If the flux of photons is sufficiently low then the exciton migration in systems such as a
pigment network can be satisfactorily modelled by a single excitation. We show that in the
single-exciton subspace the multi-site electron–boson model can be mapped to a multi-site
exciton–boson model. The two-site exciton–boson model is identical to the spin-boson model.
The exciton system is coupled to all degrees of freedom of the (protein) environment which is
modelled by an infinite set of harmonic oscillators. After the discussion of the various models
in section 2, we introduce the NRG approach used here in section 3. Section 4 is devoted to the
results for the phase diagram, dynamic properties, and the absorption spectrum. We show how
the degree of delocalization depends on the different Coulomb interactions, the coupling to the
bosonic bath, and the geometric structure.

2. Model

In general we describe the problem by a small electronic system like a short chain of molecules
with the electronic part Hel coupled via the Hel−bath part to the vibronic degrees of freedom
incorporated in Hbath:

H = Hel + Hel−bath + Hbath. (1)

The parameters of the small electronic system can be extracted in principle from quantum
chemical calculations [20, 21]. The simplest possible modelling is a two-state system with the
two states corresponding to the electron being located at the donor or at the acceptor site. In
this case, the electronic part can be modelled via

Hel =
∑

i=A,D

εi c
†
i ci − t (c†

AcD + c†
DcA), (2)

which is equivalent to the spin-boson model. Apparently, models of this kind where the
electrons are allowed to hop between donor and acceptor sites (with hopping matrix element t)
are connected to electron transfer problems. In this paper we do not consider such hopping
processes and focus on excitation transfer induced by a two-particle interaction term in the
Hamiltonian.

In the current work, we explore excitons in a chain using the Hamiltonian

Hel =
∑

ik=0,1

εikc†
ikcik +

∑

i j

Ji j(c
†
i0c†

j1c j0ci1 + h.c.), (3)

where each site of the electronic system is represented by two levels (the ground state 0 and the
excited state 1). The operators c(†)

i0/1 denote annihilation (creation) operators for the electrons
on site i in the level 0/1, εik is the on-site energy at site i and level k and Ji j the exchange
interaction between site i and j . We neglect the single-electron hopping between neighbouring
sites as well as spin degrees of freedom. Therefore, the excitations (Frenkel excitons) can
only be transferred via the Coulomb coupling. Similar models were discussed, for example,
in [3, 16, 18, 22]. We consider a filling of one spinless electron on each site.

The Hamiltonian equation (3) describes a coherent motion of the excitation through the
whole system; this coherence can be destroyed in the presence of a dissipative environment.
Here, the coupling to the environment is due to the change of the dipole moment of the molecule
during the transition. Simulations showed that the coupling involves essentially all nuclear
degrees of freedom of the protein which have to be described quantum mechanically [23]. Even
at physiological temperatures there are many degrees of freedom in proteins with frequencies
high enough to make a quantum mechanical description necessary. We represent the vibrations
of the environment by a set of harmonic oscillators similar to the spin-boson model.
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Figure 1. Schematic view of the two-site electron–boson model. The transfer integral for the
exciton transfer between donor (D) and acceptor (A) sites is given by J . Dissipation in the exciton
transfer process is due to the coupling to a common bosonic bath.

The last term in equation (1) describes the free bosonic bath

Hbath =
∑

n

ωnb†
nbn, (4)

with the bosonic annihilation (creation) operators b(†)
n . The second term in equation (1)

describes the coupling of the electrons to the bosonic bath

Hel−bath = Pel

∑

n

λn
(
b†

n + bn

)
, (5)

where λn is the coupling strength to the nth oscillator. We consider a standard site-diagonal
dipole coupling with the polarization operator Pel = ∑

i gini of the electronic system. The
values of the interaction constant gi of the i th site to the bosonic bath will be specified below
for the specific number of sites in a chain or ring. The ring is defined as a chain with periodic
boundary conditions.

In analogy to the spin-boson model [10, 11], the coupling of the electrons to the bath
degrees of freedom is completely specified by the bath spectral function

J (ω) = π
∑

n

λ2
nδ (ω − ωn) . (6)

Several parameterizations of J (ω) have been studied in the literature [10]. For a given system,
the bath spectral function can also be calculated using molecular dynamics simulations [17].
Here we restrict ourselves to a simple ohmic spectral function and will use more realistic
spectral functions in a future study.

2.1. Dimer

For the dimer (that is the two-site electron–boson model as sketched in figure 1) the
Hamiltonian equation (1) has the following electronic part:

Hel =
∑

i=D0,D1,A0,A1

εi c
†
i ci + J

(
c†

D0
c†

A1
cD1 cA0 + h.c.

)
, (7)

and the coupling term

Pel = 1
2 (nD1 − nD0 + n A0 − n A1). (8)

The indices D0, A0 indicate the ground state on the donor/acceptor and D1, A1 the first
excited states on the donor/acceptor.

We consider one electron on each site so that the electronic degrees of freedom can be
represented by the following four-dimensional basis:

|i〉 = {|0, 0〉, |1, 0〉, |0, 1〉, |1, 1〉}, (9)
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with the notation |D; A〉 describing the donor/acceptor in the ground state (D/A = 0) or in the
excited state (D/A = 1). Introducing the notation

Ŷ =
∑

n

ωnb†
nbn, X̂ = 1

2

∑

n

λn
(
b†

n + bn

)
, (10)

we arrive at the matrix M = M0+Mb = 〈i |Hdimer| j〉(i, j = 1 . . . 4), where the matrix elements
are taken only with respect to the electronic states:

M0 =




εD0 + εA0 0 0 0
0 εD1 + εA0 J 0
0 J εD0 + εA1 0
0 0 0 εD1 + εA1



 , (11)

and

Mb =



Ŷ 0 0 0
0 Ŷ − X̂ 0 0
0 0 Ŷ + X̂ 0
0 0 0 Ŷ


 . (12)

With εD0 = εA0 = 0 and εD1 = εD , εA1 = εA the eigenvalues of the electronic part M0 are

E1 = 0,

E2 = εD + εA,

E3,4 = εD + εA

2
±
√

(εD − εA)2

4
+ J 2.

The eigenstates with energies E3,4 are linear combinations of the basis states |1, 0〉 and
|0, 1〉.

The Hamiltonian of the dimer can be decomposed into subspaces of zero, one, and two
excitons. For the subspace with one exciton in the dimer, the basis equation (9) reduces to
|i〉 = {|1, 0〉, |0, 1〉} and the matrix M reads

M =
(

εA + Ŷ − X̂ J
J εD + Ŷ + X̂

)
. (13)

This matrix allows for an exact mapping onto the spin-boson model (for a similar discussion,
see [24]) and the model is equivalent to equation (21) with N = 2.

2.2. Trimer

The Hamiltonian for a donor–bridge–acceptor system in a trimer geometry (see figure 2) takes
the form

Hel =
∑

i=D0,D1,A0,A1,B0,B1

εi c
†
i ci + JD A

(
c†

D0
c†

A1
cD1 cA0 + h.c.

)
+ JAB

(
c†

B0
c†

A1
cB1cA0 + h.c.

)

+ JB D

(
c†

B0
c†

D1
cB1 cD0 + h.c.

)
. (14)

The electrons are coupled to the bosonic bath via the polarization operator:

Pel = nD1 − nD0 + n A0 − n A1 . (15)

The basis for the electronic degrees of freedom is now composed of eight states (each site
is filled with one spinless electron):

|1〉 = |0, 0, 0〉, |2〉 = |1, 1, 1〉, |3〉 = |1, 0, 0〉, |4〉 = |0, 1, 0〉,
|5〉 = |0, 0, 1〉, |6〉 = |1, 1, 0〉, |7〉 = |0, 1, 1〉, |8〉 = |1, 0, 1〉,
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Figure 2. Schematic view of the three-site electron–boson model. The Coulomb matrix element of
excitons between donor (D), bridge (B) and acceptor (A) sites is given by J . Dissipation in the
exciton transfer process is due to the coupling of the electronic degrees of freedom to a common
bosonic bath. The excitation transfer shown in the figure is due to the coupling JDB . We also
consider periodic boundary conditions (ring) with a finite matrix elements JD A.

where the 0(1) indicates an occupied first (second) level, respectively, with the notation
|D, B, A〉 for the occupation of donor, bridge, and acceptor molecule. A direct hopping of
the exciton is possible from the donor to the acceptor or to the bridge and from the acceptor to
the bridge and back. The matrix elements now read:

〈1|H |1〉 = εD0 + εB0 + εA0 + Ŷ + (
gB0 + gD0 + gA0

)
X̂ ,

〈2|H |2〉 = εD1 + εA1 + εB1 + Ŷ + (gA1 + gD1 + gB1) X̂ ,

〈3|H |3〉 = εA0 + εB0 + εD1 + Ŷ + (
gA0 + gB0 + gD1

)
X̂ ,

〈4|H |4〉 = εD0 + εB1 + εA0 + Ŷ + (
gB1 + gD0 + gA0

)
X̂ ,

〈5|H |5〉 = εD0 + εA1 + εB0 + Ŷ + (
gD0 + gA1 + gB0

)
X̂ ,

〈6|H |6〉 = εA0 + εB1 + εD1 + Ŷ + (
gB1 + gA0 + gD1

)
X̂ ,

〈7|H |7〉 = εD0 + εB1 + εA1 + Ŷ + (
gB1 + gD0 + gA1

)
X̂ ,

〈8|H |8〉 = εD1 + εB0 + εA1 + Ŷ + (
gB0 + gD1 + gA1

)
X̂,

〈4|H |5〉 = 〈5|H |4〉 = JAB ,

〈6|H |8〉 = 〈8|H |6〉 = JAB ,

〈3|H |4〉 = 〈4|H |3〉 = JB D,

〈7|H |8〉 = 〈8|H |7〉 = JB D,

〈3|H |5〉 = 〈5|H |3〉 = JAD,

〈6|H |7〉 = 〈7|H |6〉 = JAD .

(16)

For εA1 = εB1 = εD1 = ε and JAB = JB D = JAD = J the eigenvalues are given by

E1 = 0,

E2 = 3ε,

E3,4 = ε − J,

E5 = ε + 2J,

E6,7 = 2ε − J,

E8 = 2ε + 2J.
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For the chain as in figure 2, we set JAD = 0 and JAB = JB D = J . The resulting (non-
degenerate) eigenvalues are

E1 = 0,

E2 = 3ε,

E3 = 2ε,

E4 = ε,

E5,6 = ε ± √
2J,

E6,7 = 2ε ± √
2J.

In the subspace with only one exciton, the basis consists of the three states |1, 0, 0〉, |0, 1, 0〉,
and |0, 0, 1〉, and the matrix reduces to

M =
(

εD + Ŷ + 2X̂ JAB JAD

JAB εB + Ŷ JB D

JAD JB D εA + Ŷ − 2X̂

)
. (17)

The eigenvalues for the trimer with periodic boundary conditions (JAD �= 0) and with
εA = εB = εD = ε are

E1,2 = ε − J,

E3 = ε + 2J,

and for the chain as in figure 2 the non-degenerate eigenvalues are

E1 = ε,

E2,3 = ε ± √
2J.

The model is equivalent to equation (21) with N = 3.
For the chain with different couplings of the donor and acceptor to the bridge JAB �=

JDB (JAD = 0) the eigenvalues are

E1 = ε,

E2,3 = ε ±
√

J 2
AB + J 2

DB .

The occupancy on the donor and acceptor (nD and n A) for zero coupling to the bosonic bath at
T = 0 are

〈n A〉 = 1

2

J 2
AB

J 2
AB + J 2

DB

,

〈nD〉 = 1

2

J 2
DB

J 2
AB + J 2

DB

. (18)

The degeneracy on D and A is lifted for JAB �= JDB . As will be shown below, no phase
transition occurs in this case.

2.3. Multi-site exciton–boson model

In the single-exciton subspace, the fermionic degrees of freedom of the models introduced
above can be mapped onto operators a(†)

i for a hard-core boson corresponding to the creation
and annihilation of an exciton at site i . This results in general multi-site exciton–boson models
with N sites defined by

Hmulti = Hx + Hx−bath + Hbath, (19)
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with the electronic part defined as

Hx =
N∑

i, j

Ji j a
†
i a j . (20)

The parameters Ji j for i �= j are the transfer integrals between site i and j . As before, we only
consider nearest neighbour interactions. The diagonal elements Jii are the on-site energies εi

at site i . We perform a constant shift of the Hamiltonian by Jii = J j j(∀i, j) and arrive at

Hx =
N∑

i, j,i �= j

Ji j a
†
i a j . (21)

For the coupling term we assume the following form:

Hx−bath = Pel

∑

n

λn
(
b†

n + bn

)
, (22)

with the polarization operator Pel

Pel =
N∑

i

gi a
†
i ai =

N∑

i

(i − (N + 1)/2)a†
i ai . (23)

For N = 2 the model is equivalent to the spin-boson model with the matrix M as in
equation (13), and for N = 3 it is equivalent to equation (17).

3. Method

The models we are considering here are completely specified by the parameters of the electronic
system and the spectral function J (ω) (defined in equation (6)) which can be estimated in a
classical molecular dynamics simulation. We are using here an ohmic form:

J (ω) = 2παω�(ω − ωc), (24)

where α is the dimensionless coupling for which we use values in the range 0.01–2. The
parameter J is measured in units of ωc. Typical values of h̄ωc are of the order of 1–10 meV.

As described in the introduction, basically all degrees of freedom of the bosonic bath
(the dissipative environment) are relevant for the behaviour of the electronic or excitonic
system. So it is not possible to disregard high energy states even if we are interested in
low temperature properties like the coherent behaviour for temperatures smaller than the
characteristic temperature T ∗. The renormalization group ansatz is designed for problems
where every energy scale contributes and perturbation theory typically shows logarithmic
divergences at small frequencies (energies) when the temperature goes to zero.

In order to keep the paper self-contained, we explain the numerical renormalization group
(NRG) method for the bosonic bath in detail.

Originally the NRG was invented by Wilson for a fermionic bath to solve the Kondo
problem [25, 26]. The fermionic NRG is a standard and powerful tool to investigate complex
impurity problems with one or more fermionic baths. Only recently was the method extended
to treat quantum impurity systems with a coupling to a bosonic bath [27, 28]. Here we focus
on equilibrium quantities (recently it was shown that the NRG can also be applied to non-
equilibrium situations [29, 30].)

For the numerical renormalization procedure we start from the Hamiltonian written in a
continuous form (see the detailed discussion in [28]):

H = Hel +
∫ 1

0
dε g(ε)b†

εbε + Pel

∫ 1

0
dε h(ε)(b†

ε + bε). (25)
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ω/ωcΛ–2 Λ–10 1...

J (ω)

Figure 3. Logarithmic discretization of the spectral function J (ω).

The function g(ε) is the dispersion of the bosonic bath and h(ε) characterizes the coupling
between the electronic system and the bath. The variable ε(x) has values from 0 to 1,
while x ranges from 0 to ωc. Both functions are related to the spectral function J (x) =
π(dε(x)/dx)h2[ε(x)], and ε is defined as the inverse function of g via g[ε(x)] = x (see [28]).

We start defining the renormalization group transformations by a logarithmic discretization
of the bath spectral function (figure 3) in intervals [	−n+1,	−n], with n = 0, 1, . . . ,∞ and
	 > 1 the NRG discretization parameter. The discretization is exact for 	 → 1 and still works
very well for 	 = 3. (Here we are using 	 = 2.)

Within each of these intervals only one bosonic degree of freedom is retained as a
representative of the continuous set of degrees of freedom. The function h(ε) is chosen to
be a constant in each interval of the logarithmic discretization. The Hamiltonian is written
in the new discrete basis and the resulting Hamiltonian is mapped onto a semi-infinite chain
(figure 4) with the electronic part Hel coupling to the first site of the bosonic chain. Finally the
chain-Hamiltonian is numerically diagonalized via successively adding one site to the chain.
The effective Hamiltonian is treated on successive smaller energy scales by the renormalization
group transformation

HN+1 = 	HN + 	N+1
[
εN+1b†

N+1bN+1 + tN

(
b†

N bN+1 + h.c.
)]

. (26)

The energies εn and couplings between the elements of the chain tn are falling off as 	−n .
The bosonic NRG has been shown to give very accurate results for the spin-boson

model [27, 28]. One of its strengths is the flexibility to handle a variety of models involving the
coupling of a small subsystem to a bosonic bath.

There are a few technical steps to perform the iterative diagonalization. To keep the
computation time growing only linearly with the number of sites of the semi-infinite chain
we are using a truncation scheme where only Ns ∼ 100 states are retained after each iteration.
In addition, we are using a finite number of bosonic basis states Nb for each added site which
is of the order 6–10.

To detect possible phase transitions, we calculate the eigenvalue spectrum and the density–
density correlation function (see below). In the limit of α = 0 the exciton system and the
bosonic degrees of freedom are completely decoupled. The coherent motion of the exciton is
undamped and we are in the delocalized phase. In contrast, in the case of J = 0 the system is
in the localized phase. The two phases (localized and delocalized) are connected by a quantum
phase transition. Similar to the analysis in [28], the phase diagrams of the exciton–boson
models studied here can be obtained from the flow diagram of the lowest-lying many-particle
levels. Another possibility is to calculate the density–density autocorrelation function C(ω)

which shows a divergency at the phase transition.
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b0

b1

b2

D A

Figure 4. Scheme of the bosonic chain-NRG. The boxes represent the iterative diagonalization.

We calculate C(ω) for the dimer and trimer for different sets of parameters. This quantity
is defined by

C(ω) = 1

4π

∫ ∞

−∞
dteiωt

〈
[Pel(t), Pel(0)]+

〉
,

and probes the dynamics under equilibrium preparation. For the two-site model, C(ω)

corresponds to the spin–spin correlation function of the equivalent spin-boson model:

C(ω) = 1

4π

∫ ∞

−∞
dteiωt

〈[
σz(t), σz(0)

]
+
〉
,

with σz the z-component of the spin in this model.
We calculate the density–density correlation function as the sum of δ-functions in the

Lehmann representation:

C(ω) = 1
2

∑

n

|〈0 |Pel| n〉|2 δ (ω + ε0 − εn) , ω > 0.

The function is symmetric (C(ω) = C(−ω)).
The linear absorption and emission coefficient α(ω) for the donor site of the electronic

system coupled to the bosonic bath under the influence of an external laser field of frequency
ω is given by Fermi’s golden rule:

αD(ω) = 2π
∑

f

∣∣∣
〈

f
∣∣∣H D

pert

∣∣∣ 0
〉∣∣∣

2
δ
(
ω + E0 − E f

)
, (27)

where H D
pert is defined as

H D
pert = c†

D1cD0 + c†
D0cD1. (28)

The term H D
pert describes the excitation of an electron from the ground state D0 to the excited
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Figure 5. Phase diagram of rings (solid line) and chains (dotted line) with 3, 4, 5 and 6 sites.
The system is in the localized (delocalized) phase above (below) the phase boundary. The NRG
parameters are Ns = 100, Nb = 8, and 	 = 2.

state D1. It can be treated perturbatively as long as the probing photon energy is small. For the
initial state we use the ground state |0〉, and | f 〉 are all possible final states.

The eigenenergies of H (E0 and E f ) and the matrix elements 〈0|Hpert| f 〉 are evaluated
with the NRG for different J and increasing coupling to the bosonic bath. To obtain a
continuous curve for αD(ω), the δ-functions appearing in equation (27) have to be broadened.
Here we use the strategy discussed in [31], that is replacing each δ-function by a Gaussian on
a logarithmic scale. On a linear scale, this function is not symmetric around its centre, so the
spectral weight in αD(ω) appears to be shifted to higher frequencies.

4. Results

4.1. Phase diagram

Increasing J tends to delocalize the exciton. Since we have excluded the single-electron
hopping in the Hamiltonian, the dynamics can be restricted to the single-exciton subspace
which maps onto a spin-boson model for two sites. For increasing coupling to the bosonic
bath, the exciton localizes at a critical αc. We explore the phase diagram with localized
and delocalized phases (connected by a Kosterlitz–Thouless transition) for the exciton–boson
model with 2–6 molecular sites by calculating the critical αc(J ) as a function of J . Note that
a phase transition occurs only under certain conditions—necessary is the degeneracy in energy
and occupancy of at least two sites 1 and 2 (not necessarily neighbours) with the same absolute
value of the coupling to the bosonic bath. This degeneracy is lifted if site 1 and 2 have different
occupancies, which is the case if the on-site energies of these sites are different, or in larger
systems if certain hopping matrix elements have different values. In the absence of a phase
transition we see a crossover from a delocalized to a more localized regime.

The phase diagram for the spin-boson model was calculated already in [28]. The critical
α depends linearly on the matrix element J . It was noted that the exact value of αc has to be
determined in the limit of 	 → 1. We do not perform the extrapolation, so the critical αc is
somewhat larger than the actual value.

In figure 5 we display the phase diagram of the multi-site exciton–boson model for 3, 4, 5
and 6 sites for both chain and ring geometry (chain with periodic boundary conditions).
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Figure 6. Density–density correlation function C(ω) for the dimer for different α and J = 0.4. For
small frequencies, C(ω) is linear in ω. The slope increases with increasing α = 0.1, 0.2, 0.3. For
zero bias (ε = 0) the phase transition to the localized phase is indicated by an infinite slope. The
NRG parameters are Ns = 100, Nb = 8, and 	 = 2 here and for all following figures.

The dashed and solid lines display the critical αc for the chain and ring, respectively. The
critical coupling shows a linear behaviour similar to that in the spin-boson model. For an even
number of sites the ring has a larger critical α than the chain. For an odd number of sites,
both curves cross at a certain value of J . Above this J turning off the periodic boundary
conditions will tend to delocalize the exciton. This behaviour is probably related to the change
of the occupancies on each site. We plan to investigate the intriguing even–odd difference with
non-equilibrium methods [29, 30].

For a three-site exciton–boson model no quantum phase transition is observed as soon
as the couplings between the donor and bridge JDB as well as acceptor and bridge JAB are
different. This lifts the degeneracy in the occupancy on D and A. To study the crossover from
the delocalized to a more localized phase, we calculate the equilibrium dynamical properties as
discussed in the following.

4.2. Equilibrium dynamical properties

To study the dynamics of the electron transfer process in the one-exciton subspace we calculate
the density–density correlation function C(ω) = 1

2π

∫ +∞
−∞ eiωt C(t) dt with

C(t) ∼
〈
[a†

DaD(t) − a†
AaA(t), a†

DaD(0) − a†
AaA(0)]+

〉
, (29)

for the dimer (gD = 1/2, gA = −1/2) and for the trimer (gB = 0, gA = −1, gD = 1).
In the two-site case, the density–density correlation function is identical to the spin–spin

correlation function. The correlation function shows a power-law behaviour for low frequencies
up to ω ≈ T ∗. When α approaches αc, the slope in C(ω) increases and the peak position
which defines the temperature scale T ∗ is shifted to lower energies; see figure 6. At the phase
transition the correlation function is diverging. The correlation function shows an algebraic
long time behaviour for T = 0 and an exponential decay for finite T .
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Figure 7. Crossover temperature for a trimer ring with J2 = JAB = JD A = 0.4 (triangles), 0.5
(diamonds), 0.6 (circles) and various values of J1. The coupling α is set to 0.1.
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Figure 8. Crossover temperature for a trimer chain with J2 = 0.5 and various values of J1. The
coupling α is set to 0.1, 0.2 and 0.3 for the upper, middle and lower curve, respectively.

In figure 7 we show results for the characteristic temperature for a trimer ring by keeping
JAB = JAD constant and varying J1 = JDB . The value of T ∗ goes through a minimum at
J1 = JAB = JAD . The larger the difference the larger is the characteristic temperature.

In figure 8 we display the characteristic temperature for an asymmetric three-site chain
with J1 �= J2 for increasing α. For large α and J1 = J2 the characteristic temperature T ∗ goes
to zero indicating the phase transition. For the asymmetric chain no phase transition occurs and
T ∗ increases with the increasing difference of the matrix elements J1 and J2 for J1 > J2.

4.3. Absorption spectrum

For α = 0, the spectrum of the two-site electron–boson model consists of four states. In
the ground state, both electrons occupy the lowest level of donor and acceptor molecules,
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Figure 9. Dimer absorption spectrum for J = 0.2, εD = εA = 0.75ωc and α = 0.1, 0.7, 1.2 as a
function of ω.

respectively. The system can be excited by a photon: D + A � D∗ + A. If we now consider a
finite J , the exciton is able to move to the acceptor and back (D∗ + A � D + A∗).

To calculate the absorption spectrum we choose the initial state to be the ground state. The
ground state is calculated with the NRG and depends on α and J . We set the energy difference
between the ground state and the excited state to ε = 0.75ωc. For α = 0 and J = 0, the peak
in the absorption spectrum is at ω = ε = 0.75. For increasing J , the peaks are at frequencies
equal to the eigenenergies ω = ε ± J . If now α is increased the two main peaks are broadened
and shifted (see figure 9). The height of the peak at low frequencies increases with increasing α.

The absorption spectrum for the trimer with α = 0 shows peaks at ε + 2J and ε − J
for the ring geometry (with JAB = JAD = JB D = J ) and at ε ± √

2J for the chain. The
absorption spectra for various values of α are shown in figures 10 and 11 for the ring and chain,
respectively.

5. Conclusion

In this paper we studied the phase diagram, equilibrium dynamical properties and the linear
absorption spectrum of Frenkel excitons in models with different sites (with or without periodic
boundary conditions) where the electronic degrees of freedom are coupled to a bosonic bath.
We used the numerical renormalization group method which allows one to study the electron–
boson and exciton–boson models in the full parameter regime.

We studied in detail the phase diagrams of the multi-site electron–boson models in the
subspace of one exciton. In the zero-bias case (all molecules have degenerate HOMO and
LUMO energies), increasing the value of α leads to a quantum phase transition between a
delocalized and a localized phase. For the two-site case (dimer) the exciton–boson model can
be mapped onto the spin-boson model for which the phase diagram is already known. For more
than two sites, the behaviour is more complicated and depends also on the boundary conditions
(chain versus ring).

The calculation of the density–density correlation function allows one to estimate the
characteristic temperature for the crossover between delocalized and localized phase. This
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Figure 10. Absorption spectrum of a trimer ring for J = 0.2, εD = εA = 0.75ωc and
α = 0.1, 0.2, 0.3 as a function of ω. The NRG parameters are Ns = 100, Nb = 8 and 	 = 2.

Figure 11. Chain absorption spectrum for J = 0.3, εD = εA = 0.75ωc and α = 0.1, 0.2, 0.3.

crossover temperature T ∗ is zero for the localized phase and increases when the system goes to
the delocalized phase.

In the trimer we investigated different coupling between the donor and bridge as well as the
acceptor and bridge. The degeneracy of the occupation on acceptor and donor is lifted, which
leads to the disappearance of a phase transition (similar to the change of the on-site energies).
Changing the coupling between donor and bridge (JDB ) with fixed coupling between acceptor
and bridge (JAB ) leads generally to a more delocalized behaviour for JDB > JAB .

It would be interesting to compare our results to optical experiments of small bio-
engineered systems or quantum dots in which exciton transfer occurs. Further studies are
planned to evaluate the time dependent behaviour of excitons, to extend the system to larger
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rings and to include static disorder using time dependent and equilibrium NRG to model
systems like the LH-II ring.
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